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What information is in the primary (unlensed) CMB?

From shape of the power spectra, get
strong constraints on:

{Ωbh
2,Ωmh2, ns}

Adding polarization at low multipoles,
can separate:

{τ, ln(δζ)}

(Without this information, (ln(δζ) − τ)
is very well measured, but only this com-
bination.)



What information is in the primary (unlensed) CMB?

Finally, can measure angular scale of the acoustic peaks:

`A = π
D∗
s∗

← Angular diameter distance to recombination

← Sound horizon at recombination

This can be interpreted (via the distance
measurement D∗) as one constraint in a
dark energy parameter space.

e.g. Hubble parameter h is well

measured if w = −1 is assumed

(WMAP3: h = 0.73± 0.03)

or prior on h constrains w

But, because there is only one observ-
able, large degeneracies exist.



Angular diameter distance degeneracy (in unlensed CMB)

Models with w = −1 (and h = 0.73) and w = −0.3 (and
h = 48.8) are nearly degenerate in the unlensed CMB



Gravitational lensing

Intevening matter between the surface of last scattering and an
observer today lenses the CMB:

T̃ (n̂) = T (n̂ +∇φ(n̂)),

where φ is the projected potential, given by the line-of-sight
integral

φ(n̂) = −2

∫
dD

(Ds − D)

DDs
Ψ(Dn̂,D)

⇒ The CMB has some sensitivity to structure at z ∼ 1



Lensing breaks the angular diameter distance degeneracy

Fractional difference between w=-1 and w=-0.3 models:



Scope of talk

Questions:
I What dark energy observables are contained in the lensed

CMB? (complementing `A = πD∗/s∗)
I Are parameter constraints from the lensed CMB affected by

non-Gaussian statistics?

Caveats:
I Parameter forecasts computed in the Fisher matrix

approximation

I Only parameter constraints from power spectra (i.e., two-point
statistics) are considered. Higher-order statistics (such as lens
reconstruction methods) may improve constraints.



Why is the lensed CMB non-Gaussian?

T̃ (n̂) = T (n̂ +∇φ(n̂))

= T + (∇aφ)(∇aT ) +
1

2
(∇aφ)(∇bφ)(∇abT ) + · · ·

I Terms starting with the second are non-Gaussian (products of
Gaussian fields)



Non-Gaussianity: intuitive argument

Consider the question: how well can the overall amplitude of the
lensing B-modes be measured?

Cosmic variance limited, `max = 2000: 0.07%



Non-Gaussianity: intuitive argument

Now ask: Which angular scales in the lensing potential contribute
to the overall B-mode amplitude?

Sample variance limit: 0.20% (assuming ficticious direct
measurement of φ)



Apparent contradiction

I Seem to get better constraint from measuring the lensed
B-modes (0.07%) than measuring the unlensed CMB and the
lensing potential φ (0.20%).

I However, the analysis has
implicitly assumed Gaussian
statistics for BB. When
non-Gaussian contributions to the
BB power spectrum covariance are
included, the variance of the
overall amplitude degrades (by the
factor Dλ shown).



Non-Gaussianity: complete treatment

I Non-Gaussianity is always negligible in {TT,TE,EE}
I In BB, non-Gaussianity increases the variance of a few

eigenmodes

I Noise level has to be very
good for non-Gaussianity
to be important!



Parameter Estimation Example (fixed Ωmh2, ln(δζ))

Reference survey: 20 µK-arcmin, all-sky, zero beam
+ 1 µK-arcmin, fsky = 0.1, zero beam

Gaussian vs non-Gaussian uncertainties on (Ωνh
2, w):



Parameter Estimation Example (fully marginalized)

Reference survey: 20 µK-arcmin, all-sky, zero beam
+ 1 µK-arcmin, fsky = 0.1, zero beam

Gaussian vs non-Gaussian uncertainties on (Ωνh
2, w):



Which modes in Cφφ
` can CMB lensing constrain?

I Principal component analysis
I {TT,TE,EE} constrain one principal component K1(`) at

` ∼ 100
I BB constrains a distinct principal component K2(`) across a

wide range of `



Dark energy observables defined

Θ1 =
∑

`

Cφφ
` K1(`) Θ2 =

∑
`

Cφφ
` K2(`)



Dark energy observables: sensitivity



Dark energy observables: example

Reference survey: 20 µK-arcmin, all-sky, zero beam
+ 1 µK-arcmin, fsky = 0.1, zero beam

{Θi} picture vs complete Fisher calculation:



Application 1: existence of a B-mode sensitivity “floor”

I Uncertainty in {Ωmh2} makes a ∼ 0.01 contibution to σ(Θ2)

I Improving experimental sensitivity beyond this level will not
improve dark energy constraints



Application 2: reionization history uncertainties

I Without assuming sharp reionization, σ(τ) ∼ 0.01 is best
possible

I Uncertainties in Θi from ln(δζ) (rather than Ωmh2) would
then be the limiting factor at high sensitivity



Application 3: constraints on (w0, wa)

Fixing neutrino mass, but allowing w(a) = w0 + (1− a)wa.
Reference survey: 20 µK-arcmin, all-sky, zero beam

+ 1 µK-arcmin, fsky = 0.1, zero beam

{Θi} picture vs complete Fisher calculation:



Summary

I The unlensed CMB places excellent constraints on one dark
energy observable `A = πD∗/s∗ but is otherwise degenerate.

I Through lensing, the CMB is sensitive to density fluctuations
at z ∼ 1, which break the degeneracy.

I Lensed {T,E} can constrain a second observable Θ1; lensed B
can constrain a third observable Θ2.

I Non-Gaussianity in lensed {TT,TE,EE} is always negligible.

I Non-Gaussianity in lensed BB degrades the overall amplitude
uncertainty by a factor of ∼ 10; this does not affect dark
energy uncertainties after marginalizing Ωmh2.

I There is a B-mode sensitivity “floor”, beyond which dark
energy constraints do not improve.

I The parameters w and wa cannot be separated using the
CMB alone.


